The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer

نویسندگان

  • A. Masseboeuf
  • Y. Lamy
  • B. Viala
  • Jeanne Marvig
چکیده

Lorentz Transmission Electron Microscopy (LTEM) combined with in situ magnetizing experiments is a powerful tool for the investigation of the magnetization reversal process at the micron scale. We have implemented this tool on a conventional Transmission Electron Microscope (TEM) to study the exchange anisotropy of a polycrystalline Co35Fe65/NiMn bilayer. Semi-quantitative maps of the magnetic induction were obtained at different field values by the Differential Phase Contrast (DPC) technique adapted for a TEM (SIDPC). The hysteresis loop of the bilayer has been calculated from the relative intensity of magnetic maps. The curve shows the appearance of an exchange bias field reveals with two distinct reversal modes of the magnetization: the first path corresponds to a reversal by wall propagation when the applied field is parallel to the anisotropy direction whereas the second is a reversal by coherent rotation of magnetic moments when the field is applied antiparallel to unidirectional anisotropy direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband ferromagnetic resonance linewidth measurement of magnetic tunnel junction multilayers

The broadband ferromagnetic resonance FMR linewidth of the free layer of magnetic tunnel junctions is used as a simple diagnostic of the quality of the magnetic structure. The FMR linewidth increases near the field regions of free layer reversal and pinned layer reversal, and this increase correlates with an increase in magnetic hysteresis in unpatterned films, low-frequency noise in patterned ...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Quantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure

We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...

متن کامل

Electron holography study of remanence states in exchange-biased MnPd/Fe bilayers grown epitaxially on MgO(001).

We investigated magnetic remanence states of epitaxially grown, exchange-biased MnPd/Fe bilayers by electron holography emphasizing the crystallographic orientations of the layers. Thin-foil transmission electron microscopy (TEM) specimens were carefully prepared along both hard and easy axes of the Fe layer. The ex situ magnetization-reversal process was carried out using the TEM specimens, an...

متن کامل

Direct imaging of asymmetric magnetization reversal in exchange-biased Fe/MnPd bilayers by x-ray photoemission electron microscopy.

X-ray photoemission electron microscopy is used to probe the remnant magnetic domain structure in high quality, single-crystalline, exchange-biased Fe/MnPd bilayers. It is found that the induced unidirectional anisotropy strongly affects the overall magnetic domain structure. Real space images of the ferromagnetic domains provide direct evidence for an asymmetric magnetization reversal process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009